

SYIAH KUALA UNIVERSITY FACULTY OF TEACHER TRAINING AND EDUCATION SMA LABSCHOOL

Kopelma Darussalam, Syiah Kuala, Banda Aceh City, Aceh 23373
Website: www.unsyiah.ac.id E-mail: info@unsyiah.ac.id

Detailed Lesson Plan in Mathematics X
 'Area of Triangle Using Trigonometry'

I. LEARNING OBJECTIVES

During and after the 120-minute lesson, at least 75% of the students are expected to:

1. Give the trigonometric formulas for finding the area of triangle;
2. Compute for the given area of triangle using trigonometry and Heron's formula.
3. Cite the importance of computing the given area of a triangle using trigonometry in real life scenario.

II. SUBJECT MATTER

A. Topic: Area of Triangle Using Trigonometry
B. References:

- https://www.mathsisfun.com/algebra/trig-area-triangle-without-rightangle.html
- https://www.mathbitsnotebook.com
- https://www.youtube.com/watch?v=-2f-uDViUfc
- https://www.youtube.com/watch?v=_syV6cDk7Lg
C. Materials: Visual aids, white board marker and white board, LCD projector, Laptop, Power Point presentation
D. Skills: Analytical thinking, critical thinking, computational skill, problem solving skill
E. Key Concepts:

There are several ways to compute the area of triangle, one of it is using trigonometry. That is to say, the area of a triangle is half the product of two sides times the sine of the included angle.
F. Values Integration: Collaboration, self-actualization, decision making
G. Methodology: 3I's (Introduction, Interaction, Integration)

III. PROCEDURE

$\begin{gathered} \text { TEACHING } \\ \text { HINTS } \\ \hline \end{gathered}$	TEACHER'S ACTIVITY	STUDENTS' ACTIVITY
A. Preliminary Activities 1. Greetings	Good morning class!	

		Good morning Sir!
2. Opening Prayer		
3. Securing Cleanliness	Before you take your seats, kindly arrange your chairs and pick up the pieces of papers/plastics that you may see on the floor.	(Students will do what is said)
4. Checking of Attendance	Beadle, kindly list down the names of those who are absents for today's discussion. Please hand it to me later.	Yes Sir!
5. Checking of Assignment	Thank you very much! Now, did I give you an assignment last meeting?	No, Sir!
6. Recall	Okay, since we have no assignment to check, let us have a recap of our previous lesson.	
	What theorem are we going to use to find the other side of a right triangle given only the two sides? Excellent!	(Students may try to answer) *Pythagorean Theorem
	Again, what is the formula used in Pythagorean theorem?	(Students may try to answer) *Sir, the formula of Pythagorean theorem is $c^{2}=a^{2}+b^{2}$.
	Very good! What about the name of each sides of a right triangle?	(Students may try to answer) *Sir, the name of the sides of the triangle are opposite, adjacent and hypotenuse.
	Great! Please enumerate the trigonometric ratios that you know.	(Students may try to answer) *Sir, the different trigonometric ratios are sine, cosine, tangent, etc.
	Awesome! So previously, we discussed Pythagorean theorem and	

	trigonometric ratios. Later on, we will be discussing another lesson under trigonometry.	
INTRODUCTION		Potani Ahmad owns a triangular piece of land where he planted durian for merchandise. He used to put fence on his triangular piece of land to avoid from thief.

Presentation of the Lesson	Question number 1. Question number 2. Question number 3. That's great! Congratulations! Again, what are the words you get on the game? Excellent! The words that you get has something to do with our topic for today, and our topic for today will also help petani Ahmad to know how much land he owns. Our topic for today is all about AREA OF TRIANGLE	ANSWER: AREA ANSWER: TRIANGLE ANSWER: TRIGONOMETRY Sir, the words we get are area, triangle, and trigonometry.

Presentation of Lesson Objectives	USING TRIGONOMETRY. But before we dig deeper into the topic, here are the learning objectives that we need to attain during and at the end of the 120 -minute discussion, for you to be guided. (Teacher will flash the lesson objectives on the board)	
INTERACTION B. Lesson Proper	There are several ways to compute for the area of triangle. For instance, there's a general formula for the area of a triangle which is well known. May you all please say it aloud the formula in finding the area of triangle? Very good! In this triangle, can you locate the base and the height of the triangle? Excellent! Why can we just measure the height anyway? But actually we really can't do that. What do you observe about the triangle? Very good! Where can we just use this formula?	Sir, the formula in finding the area of triangle is $A_{\Delta}=\frac{1}{2} b h$. Where b is the base and the h is the height of the triangle. Sir, the base is 8 cm and basically, there is no height. Sir, the triangle is not a right triangle that's why it doesn't have height. Sir, we can only use this formula if it is a right angled triangle.

	Awesome. When you have right triangle, of course there is a 90 degrees angle. But absolutely, we can't use it for a non-right angle triangle. So, what do you think is the formula in finding the area of non-right angled triangle given only two sides and the included angle? If that's the case, I'll help you to discover it. Take a look at the picture. As you can see, the vertices are labeled capital A, B and C, and what we normally do, if we got letters A, B and C, we make side opposite angle B small b and the side opposite angle C small c and so on. I've still put h to denote the height of the triangle. I put a little red arc here because I'm particularly interested on angle C. We're going to look within this right triangle on the left and I can write down that the Sine of angle C is equal to the opposite divided by the hypotenuse. So, that's h divided by b. $\operatorname{Sin} \mathrm{C}=\frac{h}{b}$ Now, if I just multiply that equation through b, I will get $b \sin C$ is equal to h . $\mathrm{b} \sin \mathrm{C}=\mathrm{h}$	(Student may try to answer) Sir, we still don't know it yet.

	Excellent! How about if all the sides of a triangle is given, what formula are we going to use? Very good! That's it!	$\begin{aligned} A_{\Delta} & =\frac{1}{2} a b \sin C \\ A_{\Delta} & =\frac{1}{2} b c \sin A \\ A_{\Delta} & =\frac{1}{2} a c \sin B \end{aligned}$ Sir, we must use the heron's formula by following this main step: Step 1: Calculate "s" (half of the triangles perimeter): $\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$ Step 2: Then calculate the Area: $\mathrm{A}=\sqrt{s(s-a)(s-b)(s-c)}$
INTEGRATION	Let us see if you understand fully what we had discussed earlier. I have here 2 triangles, one given two sides and an angle and the other is given 3 sides. We will find the area of the both triangle. What we are going to do is to solve it using heron's formula and the trigonometric formula. First count from one to two. (the teacher will facilitate the counting) For those who got number 1, you will solve the problem using the trigonometric formula for the $1^{\text {st }}$ picture and for number two, you will use the Heron's formula for the $2^{\text {nd }}$	(Students start counting).

C. Generalization	Great! You're doing so well. But before we forget petani Ahmad, let us now help him know the area of his triangular piece of land! By looking in the illustration of his land, what do you think is the area of this triangle? Common let's help petani Ahmad solve his problem. You may do it in pair. Excellent! The land does petani Ahmad own is $14,530 \mathrm{~m}^{2}$? Ah! That's it. Very good. I'll tell petani Ahmad later. What about giving yourselves a big round of applause. So what have you learned from our discussion this morning? Okay very good! So do you think it's also important for you to know how to compute for a given triangle using trigonometry?	(Student may try to answer) *Sir, petani Ahmad owns 14,530 m^{2} triangular piece of land. Yes, Sir! (Students clapping their hands) (Students may try to answer) *Sir we learned how the area of triangle derived from trigonometry and its formulas. We also learned that if three sides of a triangle is given, we can use the Heron's formula. Yes Sir!

In what way?	Sir, one of the importance of it is the problem of petani Ahmad. Through learning the formula, we can solve that kind of problem which really help us in solving real life problem.	
	That's right! Very good! What about you, do you think learning this topic is important in our real life scenario?	Yes, Sir!
Great! What about the others? Do you do think the same?	Yes Sir!	
Excellent! That's what I like. Do you have anything more to clarify?	None Sir!	

IV. EVALUATION

(Worksheet)

I. ENUMERATION:

1. Give the three different trigonometric formulas for finding the area of triangle.
2. Give and enumerate the formula and step process of Heron's formula.
II. Directions: Solve the following problems. Use the correct formula on each problem. Show your complete solutions.
3. In an isosceles Δ, the two equal sides each measure 20 meters, and they include an angle of 35°. Find the area of the isosceles triangle, to the nearest sq. meter.
4. In a rhombus, each side is 15 , and one angle is 92°. Find the area of the rhombus, to the nearest square unit.
5. The accompanying diagram shows a triangular plot of land located in Moira's garden.

Find the area of the plot of land, and round your answer to the nearest hundred square feet.

Reference: Tons of Free Math Worksheets at: © www.mathworksheetsland.com
Regents Exam Questions A2.A.74: Heron's Formula @ www.jmap.org

V. ASSIGNMENT

I. Solve the following problems.

1. A garden in the shape of an equilateral triangle has sides whose lengths are 10 meters. What is the area of the garden?
a. $25 \mathrm{~m}^{\wedge} 2$
b. $253 \mathrm{~m}^{\wedge} 2$
c. $50 \mathrm{~m}^{\wedge} 2$
d. $503 \mathrm{~m}^{\wedge} 2$
2. In $\triangle P Q R, P Q=9$ meters and $P R=12$ meters. If the area of the triangle is 32 sq . meters, find the measure of $<\mathrm{P}$ to the nearest degree.
II. Study about the law of sine. Give the formula of laws of sine.

Prepared by:
JAY-JAY P. COLAR
BSE - Mathematics, CBSUA - CDE

Noted by:
TUTY HANNAH
UNSYIAH-SMA LABSCHOOL

